56 research outputs found

    Magneto-inductive Passive Relaying in Arbitrarily Arranged Networks

    Full text link
    We consider a wireless sensor network that uses inductive near-field coupling for wireless powering or communication, or for both. The severely limited range of an inductively coupled source-destination pair can be improved using resonant relay devices, which are purely passive in nature. Utilization of such magneto-inductive relays has only been studied for regular network topologies, allowing simplified assumptions on the mutual antenna couplings. In this work we present an analysis of magneto-inductive passive relaying in arbitrarily arranged networks. We find that the resulting channel has characteristics similar to multipath fading: the channel power gain is governed by a non-coherent sum of phasors, resulting in increased frequency selectivity. We propose and study two strategies to increase the channel power gain of random relay networks: i) deactivation of individual relays by open-circuit switching and ii) frequency tuning. The presented results show that both methods improve the utilization of available passive relays, leading to reliable and significant performance gains.Comment: 6 pages, 9 figures. To be presented at the IEEE International Conference on Communications (ICC), Paris, France, May 201

    Robust Near-Field 3D Localization of an Unaligned Single-Coil Agent Using Unobtrusive Anchors

    Full text link
    The magnetic near-field provides a suitable means for indoor localization, due to its insensitivity to the environment and strong spatial gradients. We consider indoor localization setups consisting of flat coils, allowing for convenient integration of the agent coil into a mobile device (e.g., a smart phone or wristband) and flush mounting of the anchor coils to walls. In order to study such setups systematically, we first express the Cram\'er-Rao lower bound (CRLB) on the position error for unknown orientation and evaluate its distribution within a square room of variable size, using 15 x 10cm anchor coils and a commercial NFC antenna at the agent. Thereby, we find cm-accuracy being achievable in a room of 10 x 10 x 3 meters with 12 flat wall-mounted anchors and with 10mW used for the generation of magnetic fields. Practically achieving such estimation performance is, however, difficult because of the non-convex 5D likelihood function. To that end, we propose a fast and accurate weighted least squares (WLS) algorithm which is insensitive to initialization. This is enabled by effectively eliminating the orientation nuisance parameter in a rigorous fashion and scaling the individual anchor observations, leading to a smoothed 3D cost function. Using WLS estimates to initialize a maximum-likelihood (ML) solver yields accuracy near the theoretical limit in up to 98% of cases, thus enabling robust indoor localization with unobtrusive infrastructure, with a computational efficiency suitable for real-time processing.Comment: 7 pages, to be presented at IEEE PIMRC 201

    Practical Accuracy Limits of Radiation-Aware Magneto-Inductive 3D Localization

    Full text link
    The key motivation for the low-frequency magnetic localization approach is that magnetic near-fields are well predictable by a free-space model, which should enable accurate localization. Yet, limited accuracy has been reported for practical systems and it is unclear whether the inaccuracies are caused by field distortion due to nearby conductors, unconsidered radiative propagation, or measurement noise. Hence, we investigate the practical performance limits by means of a calibrated magnetoinductive system which localizes an active single-coil agent with arbitrary orientation, using 4 mW transmit power at 500 kHz. The system uses eight single-coil anchors around a 3m x 3m area in an office room. We base the location estimation on a complex baseband model which comprises both reactive and radiative propagation. The link coefficients, which serve as input data for location estimation, are measured with a multiport network analyzer while the agent is moved with a positioner device. This establishes a reliable ground truth for calibration and evaluation. The system achieves a median position error of 3.2 cm and a 90th percentile of 8.3 cm. After investigating the model error we conjecture that field distortion due to conducting building structures is the main cause of the performance bottleneck. The results are complemented with predictions on the achievable accuracy in more suitable circumstances using the Cram\'er-Rao lower bound.Comment: To appear at the IEEE ICC 2019 Workshops. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Pairwise Distance and Position Estimators From Differences in UWB Channels to Observers

    Full text link
    We consider the problem of obtaining relative location information between two wireless nodes from the differences in their ultra-wideband (UWB) channels to observer nodes. Our approach focuses on the delays of multipath components (MPCs) extracted from the observed channels. For the two different cases of known and unknown MPC association between these channels, we present estimators for the distance and for the relative position vector between the two nodes. The position estimators require both MPC directions and MPC delays as input. All presented estimators exhibit very desirable technological properties: they do not require line-of-sight conditions, precise synchronization, or knowledge about the observer locations or about the environment. These advantages could enable low-cost wireless network localization in dynamic multipath environments. The exposition is complemented by a numerical evaluation of the estimation accuracy using random sampling, where especially the position estimators show the potential for great accuracy.Comment: To appear at the IEEE Global Communications Conference (GLOBECOM) Workshops 2021, Madrid, Spain. This work has been submitted to the IEEE for publication. Copyright may be transferred without notice. This is the short conference version of the full paper arXiv:2108.09703. v2 fixes a copy-and-paste error in (21). arXiv admin note: substantial text overlap with arXiv:2108.0970

    Load Modulation for Backscatter Communication: Channel Capacity and Near-Capacity Schemes

    Full text link
    In backscatter communication (BC), a passive tag transmits information by just affecting an external electromagnetic field through load modulation. Thereby, the feed current of the excited tag antenna is modulated by adapting the passive termination load. This paper studies the achievable information rates with a freely adaptable passive load. As a prerequisite, we unify monostatic, bistatic, and ambient BC with circuit-based system modeling. We present the crucial insight that channel capacity is described by existing results on peak-power-limited quadrature Gaussian channels, because the steady-state tag current phasor lies on a disk. Consequently, we derive the channel capacity for the case of an unmodulated external field, for general passive, purely reactive, or purely resistive tag loads. We find that modulating both resistance and reactance is important for very high rates. We discuss the capacity-achieving load statistics, rate asymptotics, technical conclusions, and rate losses from value-range-constrained loads (which are found to be small for moderate constraints). We then demonstrate that near-capacity rates can be attained by more practical schemes: (i) amplitude-and-phase-shift keying on the reflection coefficient and (ii) simple load circuits of a few switched resistors and capacitors. Finally, we draw conclusions for the ambient BC channel capacity in important special cases.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice. Included conference paper: arXiv:2201.0024

    Magneto-Inductive Powering and Uplink of In-Body Microsensors: Feasibility and High-Density Effects

    Full text link
    This paper studies magnetic induction for wireless powering and the data uplink of microsensors, in particular for future medical in-body applications. We consider an external massive coil array as power source (1 W) and data sink. For sensor devices at 12 cm distance from the array, e.g. beneath the human skin, we compute a minimum coil size of 150 um assuming 50 nW required chip activation power and operation at 750 MHz. A 275 um coil at the sensor allows for 1 Mbit/s uplink rate. Moreover, we study resonant sensor nodes in dense swarms, a key aspect of envisioned biomedical applications. In particular, we investigate the occurring passive relaying effect and cooperative transmit beamforming in the uplink. We show that the frequency- and location-dependent signal fluctuations in such swarms allow for significant performance gains when utilized with adaptive matching, spectrally-aware signaling and node cooperation. The work is based on a general magneto-inductive MIMO system model, which is introduced first.Comment: 6 pages, to appear at IEEE WCNC 2019. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Inter-Node Distance Estimation from Multipath Delay Differences of Channels to Observer Nodes

    Full text link
    We study the estimation of distance d between two wireless nodes by means of their wideband channels to a third node, called observer. The motivating principle is that the channel impulse responses are similar for small d and drift apart when d increases. Following this idea we propose specific distance estimators based on the differences of path delays of the extractable multipath components. In particular, we derive such estimators for rich multipath environments and various important cases: with and without clock synchronization as well as errors on the extracted path delays (e.g. due to limited bandwidth). The estimators readily support (and benefit from) the presence of multiple observers. We present an error analysis and, using ray tracing in an exemplary indoor environment, show that the estimators perform well in realistic conditions. We describe possible localization applications of the proposed scheme and highlight its major advantages: it requires neither precise synchronization nor line-of-sight connection. This could make wireless user tracking feasible in dynamic indoor settings.Comment: To appear at IEEE ICC 2019. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Cooperative Magneto-Inductive Localization

    Full text link
    Wireless localization is a key requirement for many applications. It concerns position estimation of mobile nodes (agents) relative to fixed nodes (anchors) from wireless channel measurements. Cooperative localization is an advanced concept that considers the joint estimation of multiple agent positions based on channel measurements of all agent-anchor links together with all agent-agent links. In this paper we present the first study of cooperative localization for magneto-inductive wireless sensor networks, which are of technological interest due to good material penetration and channel predictability. We demonstrate significant accuracy improvements (a factor of 3 for 10 cooperating agents) over the non-cooperative scheme. The evaluation uses the Cram\'er-Rao lower bound on the cooperative position estimation error, which is derived herein. To realize this accuracy, the maximum-likelihood estimate (MLE) must be computed by solving a high-dimensional least-squares problem, whereby convergence to local minima proves to be problematic. A proposed cooperative localization algorithm addresses this issue: first, preliminary estimates of the agent positions and orientations are computed, which then serve as initial values for a gradient search. In all our test cases, this method yields the MLE and the associated high accuracy (comprising the cooperation gain) from a single solver run. The preliminary estimates use novel closed-form MLE formulas of the distance, direction and orientation for single links between three-axis coils, which are given in detail.Comment: To appear at the IEEE PIMRC 2021 conference. This work has been submitted to the IEEE for publication. Copyright may be transferred without notic

    The Cellular Relay Carpet: Distributed Cooperation with Ubiquitous Relaying

    Get PDF
    We consider the up- as well as downlink of a cellular network in which base stations (BSs) are supported by a large amount of relays spread over the entire area like a carpet. The BSs only see the static relays as the nodes they communicate with, which enables large antenna arrays at the BSs with sophisticated multi-user MIMO transmission. Together with a simple form of BS cooperation, the communication via the small relay cells allows to improve the data rates by distributed interference management and to reduce the complexity at the terminals. We investigate different types of relays as well as different relaying strategies for this relay carpet and compare them with respect to complexity, required channel state information (CSI), and performance in the interference-limited environment of dense cellular networks. The robustness of the different schemes with respect to channel estimation errors is studied and we conclude that especially relays of very low complexity are not sensitive to CSI imperfections. Relays can thus be applied in large numbers and enable massive MIMO at the BSs. The relay carpet proves thereby to be an efficient approach to enhance future generations of cellular networks significantly
    • …
    corecore